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This paper is the joint work of James Hart and Matt Robinson. It contains all of the
calculations of the various ideas with which we were working. It involves a brief attempt at
finding a Green’s function for an assumed radial conductivity. The latter two sections are
trying to find Green’s functions or representations of solutions (or weak solutions) to the
conductivity equation by iteratively defining solutions to Poisson’s equation and applying
a limiting procedure.

1. Radial Conductivity

For the electrical conductance problem in Rn, we have D(γDu) = 0. Where both
γ, u : Rn → R. Now, for the following calculation we assume that γ, u are both sufficiently
smooth, and impose that γ, u are radial from the origin.

Then,

r = |x| = (x2
1 + · · ·+ x2

n)
1
2

and
∂r

∂xj
=
xj
r
.

Now define, µ(r) := γ(x) and v(r) := u(x). So we obtain,

Du(x) = v′(r)
x

r
.

After substituting, our PDE turns into,

D(γDu) = D · (µ(r)v′(r)
x

r
)

= µ′(r)v′(r)
x · x
r2

+ µ(r)v′′(r)
x · x
r2

+ µ(r)v′(r)
n

r
− µ(r)v′(r)

x · x
r3

= µ′(r)v′(r) + µ(r)v′′(r) + µ(r)v′(r)
n− 1

r
= 0.

Multiplying by rn−1,

rn−1µ′(r)v′(r) + rn−1µ(r)v′′(r) + rn−2(n− 1)µ(r)v′(r) = 0

And thus for n > 1
d

dr
(rn−1µ(r)v′(r)) = 0,

1
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yielding
rn−1µ(r)v′(r) = constant.

So we have that

v(r) = k

∫ r

a

1

sn−1µ(s)
ds,

for some constants k and a. So define the “fundamental solution” to be

“H(x)” = H(|x|) =
1

nω(n)

∫ |x|
a

1

sn−1µ(s)
ds,

where ω(n) is the volume of the unit ball in Rn. Similarly for some fixed y ∈ Rn, x 7→
H(x− y) = H(|x− y|) is also γ-harmonic.

Notice, that if we take γ ≡ 1 we obtain the Newtonian potential (up to an additive
constant).

Now suppose Ω ⊂ Rn is open, bounded and that ∂Ω is C1. Suppose u ∈ C2(Ω), and H
is defined as above; that is, D(γDH) = 0, if γ is assumed to be radial). Fix x ∈ Ω and let
B(x, ε) ⊂ Ω for some sufficiently small ε > 0 (since H(y − x) has singularity when y = x).
Define Vε := Ω \ B(x, ε), so ∂Vε = ∂B(x, ε) ∪ ∂Ω. So the use of Green’s theorem gives us
the following:∫

Vε

u(y)D(γ(y − x)DH(y − x))−H(y − x)D(γ(y − x)Du(y)dy =

−
∫
Vε

Du(y) · γ(y − x)DH(y − x)−DH(y − x) · γ(y − x)Du(y)dy

+

∫
∂Vε

u(y)γ(y − x)
∂H

∂ν
(y − x)−H(y − x)γ(y − x)

∂u

∂ν
(y)dσ(y),

where ν is the outward unit normal. Now consider,

|
∫
∂B(x,ε)

H(y − x)γ(y − x)
∂u

∂ν
(y)dσ(y)|

= |
∫
∂B(x,ε)

H(ε)γ(ε)
∂u

∂ν
(y)dσ(y)|

≤ H(ε)γ(ε)

∫
∂B(x,ε)

|Du(y) · ν|dσ(y)

= H(ε)γ(ε)nω(n)εn−1 sup
∂B(x,ε)

|Du|

Now,

H(ε) =
1

nω(n)

∫ ε

a

1

sn−1γ(s)
ds,

so

εn−1nω(n)H(ε) = εn−1

∫ ε

a

1

sn−1γ(s)
ds ≤ εn−1M

∫ ε

a

1

sn−1
ds = Mεn−1(

1

εn−2
− 1

an−2
)→ 0 as ε→ 0.
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Hence,

|
∫
∂B(x,ε)

H(y − x)γ(y − x)
∂u

∂ν
(y)dσ(y)| → 0 as ε→ 0.

Next, we’ll consider ∫
∂B(x,ε)

u(y)γ(y − x)
∂H

∂ν
(y − x)dσ(y)

First we’ll note that

DH(y − x) =
1

nω(n)

y − x
|y − x|nγ(y − x)

and ν, the outward pointing unit normal is

ν = −y − x
ε

(ε = |y − x|).

Thus,

∂H

∂ν
(y−x) = DH(y−x)·ν =

1

nω(n)

y − x
εnγ(ε)

·x− y
ε

= − 1

nω(n)

ε2

εn+1γ(ε)
= − 1

nω(n)

1

εn−1γ(ε)
.

Thus, ∫
∂B(x,ε)

u(y)γ(y − x)
∂H

∂ν
(y − x)dσ(y) =

1

nω(n)

∫
∂B(x,ε)

u(y)γ(ε)
−1

εn−1γ(ε)
dσ(y)

= − 1

nω(n)εn−1

∫
∂B(x,ε)

u(y)dσ(y)→ −u(x) as ε→ 0.

Now, by recalling that D(γDH) = 0 away from x our above integral equation turns into

−
∫
Vε

H(y − x)D(γ(y − x)Du(y))dy =

∫
∂Ω
u(y)γ(y − x)

∂H

∂ν
(y − x)dσ(y)

−
∫
∂B(x,ε)

u(y)γ(y − x)
∂H

∂ν
(y − x)dσ(y)

−
∫
∂Ω
H(y − x)γ(y − x)

∂u

∂ν
(y)dσ(y)

+

∫
∂B(x,ε)

H(y − x)γ(y − x)
∂u

∂ν
(y)dσ(y);

so taking ε→ 0 and applying our two previously calculated integral equalities, we obtain

−
∫

Ω
H(y−x)D(γ(y−x)Du(y))dy =

∫
∂Ω
u(y)γ(y−x)

∂H

∂ν
(y−x)−H(y−x)γ(y−x)

∂u

∂ν
(y)dσ(y)+u(x)

or rearranged

u(x) = −
∫

Ω
H(y−x)D(γ(y−x)Du(y))dy+

∫
∂Ω
γ(y−x)[H(y−x)

∂u

∂ν
(y)−u(y)

∂H

∂ν
(y−x)]dσ(y)
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Let’s assume Ω as before and u ∈ C2(Ω). Define a corrector function φx(y) such that it
satisfies {

D(γDφx) = 0 in Ω

φx = H(y − x) on ∂Ω
.

Applying Green’s theorem to φx, u in a similar fashion,∫
Ω
u(y)D(γ(y−x)Dφx(y))−φx(y)D(γ(y−x)Du(y))dy =

∫
∂Ω
γ(y−x)[u(y)

∂φx

∂ν
(y−φx(y)

∂u(y)

∂ν
]dσ(y)),

and now after inserting the requirements of φx,

−
∫

Ω
φx(y)D(γ(y − x)Du(y))dy =

∫
∂Ω
γ(y − x)[u(y)

∂φx

∂ν
(y)−H(y − x)

∂u

∂ν
(y)]dσ(y)

Adding to our previous integral result for u(x) we get,

u(x) = −
∫

Ω
H(y − x)D(γ(y − x)Du(y))dy +

∫
Ω
φx(y)D(γ(y − x)Du(y))dy

+

∫
∂Ω
γ(y − x)[H(y − x)

∂u

∂ν
(y)− u(y)

∂H

∂ν
(y − x)]dσ(y)

+

∫
∂Ω
γ(y − x)[u(y)

∂φx

∂ν
(y)−H(y − x)

∂u

∂ν
(y)]dσ(y)

That is,

u(x) = −
∫

Ω
[H(y − x)− φx(y)]D(γ(y − x)Du(y))dy

−
∫
∂Ω
γ(y − x)u(y)[

∂H

∂ν
(y − x)− ∂φx

∂ν
(y)]dσ(y)

Now, let’s define our “Green’s function”, G(x, y), to be

G(x, y) := H(y − x)− φx(y)

Thus,

u(x) = −
∫

Ω
G(x, y)D(γ(y − x)Du(y))dy −

∫
∂Ω
γ(y − x)u(y)

∂G

∂ν
(x, y)dσ(y)

Now if we suppose that u solves the Dirichlet problem,{
D(γDu) = 0 in Ω

u = g on ∂Ω

we obtain that

u(x) = −
∫
∂Ω
γ(y − x)g(y)

∂G

∂ν
(x, y)dσ(y).

[See [1] for an analogous derivation for the Laplacian.]
Now, given a nice enough domain we can calculate G(x, y) in a similar fashion as the

Green’s function associated with the Laplacian. This calculation for u(x) is ONLY valid
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at the point x, which is the center for which γ varies radially outward. Since, we have this
value at the center, it seems reasonable that one might be able to approximate u in a small
ball about x, though we have not explored much into this, nor do we personally know of
any techniques that might be useful in such an exploration.

2. Calculus with Iteration

For the following, let Ω ⊂ Rn be open, bounded and have smooth boundary and let g be
a sufficiently smooth boundary condition. Now we define a sequence of functions in C2(Ω),
with v0 satisfying {

−∆v0 = 0 in Ω

v0 = g on ∂Ω

and then iteratively, we define vn, n ≥ 1 by

{
−∆vn = Dϕ ·Dvn−1 in Ω

vn = g on ∂Ω
.

Now, if we let ϕ = log(γ), and take the limit as n→∞, we obtain the electrical conductivity
equation under Dirichlet boundary conditions. The above two PDE’s are just Laplace’s
equations and Poisson’s equation with Dirichlet conditions and so we have a well defined
Green’s function and representation formula. For v0 we have the following:

v0(x) = −
∫
∂Ω
g(y)

∂G

∂ν
(x, y)dσ(y),

where G(x, y) is our Green’s function for the Laplacian and ν is our outward pointing
normal. Similarly for vn we have:

vn =

∫
Ω
G(x, y)Dϕ ·Dvn−1dy −

∫
∂Ω
g(y)

∂G

∂ν
(x, y)dσ(y).

We would like to take the limit of both sides, to give us a representation formula for the
limiting function v which would solve the electrical conductivity equation. In order to
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bring that limit on the inside we need to analyze the integrand, so let’s look at Dvn. Now,

Dvn(x) = Dx

∫
Ω
G(x, y)Dϕ ·Dvn−1dy −Dx

∫
∂Ω
g(y)

∂G

∂ν
(x, y)dσ(y)

=

∫
Ω
DxG(x, y)Dϕ ·Dvn−1dy −

∫
∂Ω
g(y)Dx ·DyG(x, y)ν(y)(x, y)dσ(y)

=

∫
Ω
DyG(x, y)Dϕ ·Dvn−1dy −

∫
∂Ω
g(y)Dy ·DyG(x, y)ν(y)(x, y)dσ(y)

=

∫
Ω
DG(x, y)Dϕ ·Dvn−1dy −

∫
∂Ω
g(y)∆G(x, y)ν(y)dσ(y)

= −
∫

Ω
∆G(x, y)ϕDvn−1 +DG(x, y)ϕ∆vn−1dy

+

∫
∂Ω
ϕDvn−1

∂G

∂ν
(x, y)dσ(y)−

∫
∂Ω
g(y)∆G(x, y)dσ(y)

= ϕ(x)Dvn−1(x) +

∫
Ω
DG(x, y)ϕDϕ ·Dvn−2dy

+

∫
∂Ω
ϕDvn−1

∂G

∂ν
(x, y)dσ(y)−

∫
∂Ω
g(y)∆G(x, yν(y)dσ(y)

...

=

n∑
j=1

ϕj(x)

j!
Dvn−j(x) +

∫
∂Ω

[

n∑
j=1

ϕj(y)

j!
Dvn−j(y)]

∂G

∂ν
(x, y)dσ(y)

−
∫
∂Ω
g(y)∆G(x, y)ν(y)dσ(y).

Notice that since Dvn is dependent on Dvk, k ∈ {0, 1, . . . , n− 1}, we could then apply the
same formula to Dvn−1 and it would be dependent on Dvk, k ∈ {0, 1, . . . , n − 2}. Hence,
by repeating this, we see that Dvn is only dependent on Dv0. Actually finding this form
of the representation has been quite difficult. Dvn gets ugly really quickly if it’s written
out explicitly. Here are the first 3 calculated Dvn, with B :=

∫
∂Ω g(y)∆G(x, y)ν(y)dσ(y):

Dv1 =
φ

1!
Dv0 +

∫
∂Ω

φ

1!
Dv0

∂G

∂ν
dσ −B

Dv2 = φ2Dv0(
1

1!1!
+

1

2!
)− (

φ

1!
+ 1)B + (

1

1!1!
+

1

2!
)

∫
∂Ω
φ2Dv0

∂G

∂ν
dσ

+
φ

1!

∫
∂Ω

φ

1!
Dv0

∂G

∂ν
dσ −

∫
∂Ω

φ

1!
B
∂G

∂ν
dσ +

∫
∂Ω

φ

1!

∂G

∂ν

∫
∂Ω

φ

1!
Dv0

∂G

∂ν
dσdσ
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Dv3 = φ3Dv0[
1

1!1!1!
+

1

1!2!
+

1

2!1!
+

1

3!
]− [φ2(

1

1!1!
+

1

2!
) +

φ

1!
+ 1]B

+ φ2(
1

1!1!
+

1

2!
)

∫
φ

1!
Dv0

∂G

∂ν
dσ +

φ

1!
(

1

1!1!
+

1

2!
)

∫
φ2Dv0

∂G

∂ν
dσ

+

∫
φ3[

1

1!1!1!
+

1

1!2!
+

1

2!1!
+

1

3!
]Dv0

∂G

∂ν
dσ

+
φ

1!

∫
φ

1!

∂G

∂ν

∫
φ

1!
Dv0

∂G

∂ν
dσdσ +

∫
φ2(

1

1!1!
+

1

2!
)
∂G

∂ν

∫
φ

1!
Dv0

∂G

∂ν
dσdσ

+

∫
φ

1!
(

1

1!1!
+

1

2!
)
∂G

∂ν

∫
φ2Dv0

∂G

∂ν
dσdσ +

∫
φ

1!

∂G

∂ν

∫
φ

1!

∂G

∂ν

∫
φ

1!
Dv0

∂G

∂ν
dσdσdσ

− φ

1!

∫
φ

1!
B
∂G

∂ν
dσ −

∫
(φ2(

1

1!1!
+

1

2!
) +

φ

1!
)B

∂G

∂ν
dσ −

∫
φ

1!

∂G

∂ν

∫
φ

1!
B
∂G

∂ν
dσdσ

and Dv4 would have its own page had it been included. We are unsure as of yet, if we can
find a somewhat nice form for Dvn and if that form converges.

3. Weak Solution Iteration

In this section, we are using the same iteration technique as in the previous, except we
will be working in a weak sense. Because of this, we won’t have a Green’s function or
a nice representation formula, but we can use a lot of the same calculus techniques that
we used previously, because of the test functions being paired with the our set of PDE’s.
Let Ω ⊂ Rn be open, bounded and have smooth boundary. Then we recursively define a
sequence, un, to be weak solutions to Poisson’s and Laplace’s equations under Dirichlet
boundary conditions. That is, define u0 such that

0 =

∫
Ω
−∆u0vdx =

∫
Ω
Du0 ·Dvdx for all v ∈ H1

0 (Ω)

and u0 = g on ∂Ω in a trace sense. Then we define un by∫
Ω
−∆unvdx =

∫
Ω
Dϕ ·Dun−1vdx for all v ∈ H1

0 (Ω)

and un = g on ∂Ω also in a trace sense. Now notice that by taking the limit at n→∞ and
assuming (for now) commutativity of the limit and integral, we would obtain a limiting
function, u such that∫

Ω
−∆uvdx =

∫
Ω
Dϕ ·Duvdx for all v ∈ H1

0 (Ω)

and u would also equal g in trace on the boundary. Hence u would be a weak solution to
the conductivity equation; that is, if ϕ = log(γ) and{

−∆u = Dϕ ·Du in Ω

u = g on ∂Ω
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in a weak sense.
We would like to find a representation of u (or at least Du) in terms of the weak solutions

that we do know, more specifically in terms of u0, the weak harmonic function. Now, we
consider∫

Ω
Dun ·Dvdx =

∫
Ω
Dϕ ·Dun−1vdx

= −
∫

Ω
ϕ(∆un−1v +Dun−1 ·Dv)dx

=

∫
Ω
−∆un−1(ϕv)dx−

∫
Ω
ϕDun−1 ·Dvdx

=

∫
Ω
Dϕ ·Dun−2(ϕv)dx−

∫
Ω
ϕDun−1 ·Dvdx

= −
∫

Ω
ϕ(∆un−2(ϕv) +Dun−2 ·Dϕv + ϕDun−2 ·Dv)dx−

∫
Ω
ϕDun−1 ·Dvdx

= −1

2

∫
Ω

∆un−2(ϕ2v)dx−
∫

Ω
[
ϕ2

2
Dun−2 +

ϕ

1
Dun−1] ·Dvdx

...

=
1

n!

∫
Ω
−∆u0(ϕnv)dx−

∫
Ω

n∑
j=1

ϕj

j!
Dun−j ·Dvdx

= −
n∑
j=1

∫
Ω

ϕj

j!
Dun−j ·Dvdx

for all v ∈ H1
0 (Ω). Note that we used the fact that ϕjv is at least still in H1

0 (Ω) and so we
could apply our weak definitions. Therefore we end up with the following equation:

n∑
j=0

∫
Ω

ϕj

j!
Dun−j ·Dvdx = 0,

or that

Dun + ϕDun−1 +
ϕ2

2
Dun−2 + · · ·+ ϕn

n!
Du0 = 0

in a distributional sense. We feel like this sequence {Dun} should converge in some sense,
but we have not been able to give a proof of such a result. Similarly to section two, it
seems like we can write Dun in terms of just Du0, but there are more technicalities to be
considered in this case.
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